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Abstract 
In this paper I access the degree of approximation of known symbolic ap-
proach to solving of Ginzburg-Landau (GL) equations using variational me-
thod and a concept of vortex lattice with circular unit cells, refine it in a clear 
and concise way, identify and eliminate the errors. Also, I will improve its ac-
curacy by providing for the first time precise dependencies of the variational 
parameters; correct and calculate magnetisation, compare it with the one cal-
culated numerically and conclude they agree within 98.5% or better for any 
value of the GL parameter k and at magnetic field 20.01 1cB B≤ ≤ , which is 
good basis for many engineering applications. As a result, a theoretical tool is 
developed using known symbolic solutions of GL equations with accuracy 
surpassing that of any other known symbolic solution and approaching that of 
numerical one. 
 

Keywords 
Ginzburg-Landau Equations, Accurate Symbolic Solution, Circular Unit Cell  

 

1. Introduction 

Much of basic superconductor behavior in magnetic field can be understood 
from the phenomenological model expressed by two Ginzburg-Landau (GL) 
equations [1] [2]. Known numerical methods produce excellent and reliable re-
sults along with “…difficulty of a numerical solution of the complex-valued GL 
equations” [3] [4], the demands of calculation effort and time and being less 
transparent. Calculated magnetisation curves for vortex lattices with rectangular, 
hexagonal or circular unit cells coincide within line thickness [3]. This fact mo-
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tivates solving GL equations symbolically that currently lags behind due to the 
complexity of the problem [5]-[10]. The lower critical field Bc1 can be accurately 
calculated symbolically, see Section 6.1. In strong magnetic fields the symbolic 
approximation [7] holds, see Section 4.2. At medium magnetic fields a symbolic 
approximation considering vortex lattice of circular unit cells is developed [5] 
[6] [8] [10]. The drawbacks of [5] [6] are dealt with in [8] [9] [10] and will not 
be discussed here. As stated in [8] [9] [10], their method approximately de-
scribes magnetic properties of type II superconductors with periodic lattice over 
the entire range of magnetic fields and for any value of the GL parameter 

1 2
12 2k kλ ξ −= ≥ =  with λ, ξ London penetration depth and the coherence 

length respectively. Moreover, the magnetic field dependence of (reversible) 
magnetisation can be calculated in seconds. 

However, a simple check shows that magnetisation calculated with this method 
([8] [9] [10], as published) when compared to that calculated numerically [3], has 
relative differences exceeding 25%, which raises concerns about the accuracy. 
Clearly, the accuracy of the obtained solution of GL equations is vital: a symbolic 
one only has added value when its accuracy is comparable to that of the numer-
ics. In this paper I will access the degree of approximation of the method [8] [9] 
[10], refine it in a clear, concise and rational way, identify and eliminate the er-
rors. Furthermore, I will improve accuracy of the method by providing for the 
first time accurate dependencies of the variational parameters; correct and cal-
culate magnetisation, compare it with the one calculated numerically and con-
clude they agree for any k within 98.5% or better at magnetic field  

20.01 1cB B≤ ≤ , which is sufficient for many engineering applications. 

2. Theoretical Formalism 
2.1. Normalisation 

In this paper I omit the time-dependent terms in the GL equations written in SI 
units [11] [12] and use almost the same normalisation as in [3] [11] [12], except 
that I normalise all length-related quantities by the penetration depth kλ ξ=  so 
that both Bc2 and λ  are defined through ξ  and Annex provides more details. 
Below there are six mean (averaged over the unit cell area) magnetic field magni-
tudes (magnetic flux densities) in use: thermodynamic (equilibrium, applied) field 
Ba, magnetisation M (from the induced currents), the resulting (total) field: 

20

2π d
π

R
m r

r rb b b
R

= = ∫  with the local field br defined by GL equations in Table 1; 

the lower, the upper and thermodynamic critical magnetic fields: Bc1, Bc2 and 

22c ckB B=  respectively. Furthermore, in this paper 0
2 2

Φ
2πcB
ξ

=  is considered 

independent of k or B, defined externally (through ξ and BCS theory [2]) and at 
the end used as a scaling factor for all magnetic fields; 0Φ  is magnetic flux 
quantum. Note the local magnetic flux density ( ) ( ) 2zk z cb r k B r B= =  

rb  introduced (along with the four other local quantities) in Table 1 and Sec-
tion 2.4. Here and below I use the dimensionless units: distance r, modulus of 
the magnetic vector potential ( )a rϕ , modulus of the super-velocity ( )q rϕ ,  
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Table 1. Two GL equations written in forms 1, 2 for a unit cell with axial symmetry. 

Form 1 [3] [5] [9] Form 2 [8] [10] [13] 

( )22 3 1r r r r rk f f f f a kr− ∆ − + = −  (1) ( )
2

2 3 4 2 d
1

d
kr

r r r r

b
k f f f f

r
−  ∆ + − =  

 
 (3) 

( ) ( ) 2dd 1
d d

r
r r

ra
a kr f

r r r
 

= − 
 

 (2) 2 2

dd d d
d d d

;
d

kr kr
kr kr

r r

rb brb b
r r r f r r f r
 ′   

′= =    
     

 (4) 

 

magnetic induction 2m cb b B B= =  and 
2k

c

Bb bk
B

= = , current density 

( )j rϕ , magnetic flux quantum 0
2 2

Φ 2π
2 c kk Bξ

= , the free energy density F and 

the magnitude ( )rf f r ψ= =  of the complex GL order parameter ψ  are 

scaled by the dimensioned units: kλ ξ= , 2cBξ , 2cBξ , 2 2c o cB Hµ=  and 

2 cB , 
2cH

λ
, 2

0 2cHλ µ , 2
0 2c cF Hµ=  the energy density (μ0 is magnetic 

permeability of vacuum) and by the GL coefficients 0α β ψ− =  respectively, 
see Table A5 for more. All dimensioned units use the International System of 
Units SI.  

2.2. Variational Method 

The variational method [5] [6] [8] [9] [10] assumes for the dimensionless mod-
ulus ψ  of the complex-valued order parameter ( ) ( )expf r ikψ ϑ= −  a trial 
function ( )r rf f r= :  

( )2 22 ,r rf rfψ ρ∞= =                    (5) 

where the notation 2 2 2
r vrρ ξ= +  is introduced; the 0f∞ ≥ , 0vξ ≠  are two 

variational parameters representing respectively the depression of the order pa-
rameter due to overlapping vortices and the effective core radius of a vortex; r, φ 
are the radial coordinate of cylindrical coordinate system and the phase angle 
respectively (a vortex line is centered on the z-axis, so that 2 2 2r x y= + ;  

( )arctan y xϕ = ; x, y, z are rectangular system coordinates, etc. [8]). Both varia-
tional parameters f∞  and vξ  depend only on magnetic field b  and on the 
GL parameter k (Figures 1-4), so that e.g., d dr r r rρ ρ = . The order parameter 
ψ  is interpreted as the local density of the Cooper pairs and its phase ϑ  is de-
termined by the electric potential [12]. 

2.3. Free Energy Density of Superconductor 

Averaged over the cell area Helmholtz dimensionless free energy density F of a 
circular unit cell (with radius R) has two contributions [3] [8] [9] [10]: 

,em coreF F F= +                        (6) 

2 2 2
20

2π d ,
π

R
em r r kr

r rF f q b
R

 = + ∫                  (7) 

( ) ( )2
22

2 20

1 2π d1 ,
2 π

R
cor

r
e r

f r rF f
k R

 ′
= − + 

  
∫              (8) 
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Figure 1. Calculated variational parameter f∞  vs. magnetic field bm, all dots from Annex 
for k ≥ 5 collapse at one curve approximated by the splines (visible here as the solid black 
line marked “k ≥ 5”, the dashed black line is from Equation (18) and the solid red line is 
the cubic spline fit at k = 0.75, indicating the range of the deviation from the curve k ≥ 5). 
 

 

Figure 2. Calculated dependence of the variational parameter 0vξ  on k at 0b → : the 
boxes represent the data from Annex (the box size corresponds to the relative error of 
7%); the solid line—[[5], Equation (16)], the dashed line—[[8], Equation (15)]. 
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Figure 3. Calculated variational parameter 0v vξ ξ  vs. b  at 50k ≥ , the solid red line is 

cubic spline fit to the dots at k = 100, see Annex; 0vξ  is from Equation (19), the dotted and 
the dashed lines with no markers are from [[8], Equation (13)] with the constants equal to 
“−4.3” and “+4.3” respectively. 
 

 

Figure 4. Calculated variational parameter 0v vξ ξ  vs. b  at 50k ≤ : the solid black lines 

are cubic spline fits to the dots from Annex at k = 0.75, 0.85, 1.2, 2, 5, 10, 20 and 50; 0vξ  is 
from Equation (19). The solid red line for k ≥ 75 is given here as a reference. 
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where d dr rf f r′ = ; Fem—is related to super-current and to magnetic field; the 
first term of Fcore-to the local density of the Cooper pairs, and the second term:  

( )2

2
rf

k
′

-to their interaction [2] [8] [9] [10] [13]; 2π 2π kR kb=  is the area of the  

circular (Wigner-Seitz) unit cell carrying one magnetic flux quantum, thus 
2 kR kb=  r rf df dr′ =  and Table A5 lists the scaling factors.

 

2.4. Ginzburg-Landau Equations 

The GL equations are obtained by minimising the free energy of superconductor 
F with respect to e.g., fr and to qr (form 1, Table 1) or to fr and bkr (form 2). In 
the circular cell approximation both the order parameter and magnetic flux den-
sity have axial symmetry and for this case two stationary GL equations in two 
forms are listed in Table 1, where the five local quantities: rf  (with  

2

2
d d dd

d d dd r r
r r r

r
r f f ff f f r

r r r r rr
  ′′ ′∆ = = + = + 
 

), ( )ra a rϕ= , ( )kr kzb b r= ,  

( ) 1r rq q r a krϕ= = −  and ( )rj j rϕ=  are respectively moduli of the order pa-
rameter, of vector potential (satisfying the Coulomb gauge and having only 
φ-component [5]), of local magnetic flux density vector (having only z-com- 
ponent), of the dimensionless super-velocity (having only φ-component), and of 
the vortex current density vector (having only φ-component). The two unknowns 
are: rf  and one of the following: ra  or krb  respectively for the forms 1 or 2. 

Complementing the Equations (1) (2) and (3) (4) Maxwell equations are:  

( ) ( ) ( )
2

d d dd d; .
d d d d d

r rr r rkr
kr r r

rq ra rqb q qb j q
r r r r r r r r r r

  ′
′′= = = = = + − 

 
    (9) 

3. Solving Ginsburg-Landau Equation(s) 

From Equations (4) and (5) one gets:  
2

2 2
r

r

r
f f r

ρ

∞

=  and 
2

2dd
d d

krr
kr

b f b
r r r r

ρ
∞

 
= 

 
                (10) 

since 2f∞  is independent on r. Replacing the variables: d dr rr r ρ ρ=  in Equa-
tion (10) and assuming 0rρ ≠ , 0f∞ ≠  gives:  

2
2

2
d d dd

d d dd
r kr kr kr

kr
r r r r rr

b b b f bρ
ρ ρ ρ ρ ρρ ∞

 
= + = 

 
, or: ( )

2
2 2 2

2
d d 0 0

dd
kr kr

r r r kr
rr

b b f bρ ρ ρ
ρρ ∞+ − + = .(11) 

Since 0vξ ≠  (Section 3.4), also 0rρ ≠  everywhere, see Equation (3). On 
the other hand, Equation (11) is identical to Equation (4) everywhere except at 

0f∞ = , which is the case at 1b ≥  ( kb k≥ ). Therefore, I conclude that at 
1b →  the approach [7] must complement [8] [9] [10] as further elaborated in 

Section 4.2. At 0f∞ ≠  (and with f∞  independent on r) Equation (11) is the 
modified Bessel equation with the solution:  

( ) ( ) ( ) ( )1 0 2 0 ,kr kz kz r rb b r h r c I f c K fρ ρ∞ ∞= = = +            (12) 

where ( ) ( ) 2kz z ch r H r H=  is magnetic field strength, 0I  and 0K  are the 
modified Bessel’s functions respectively of the first and second kind and order 0; 
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c1 and c2 are the integration constants set by the boundary conditions. So far the 
solution is the same as obtained in [8] [9] [10]. Moreover, from Equation (12) 
one obtains:  

( ) ( ) ( ) ( )1
1 1 2 1

d
d

kr
r kr r r r

r r

f r bj j r b f r c I f c K f
fϕ ρ ρ ρ

ρ ρ
−∞

∞ ∞ ∞
∞

′= = = = −      (13) 

where 1I  and 1K  are the modified Bessel’s functions respectively of the first 
and second kind and order 1. Note that the derivation of the solution (Equations 
(10)-(13)) was skipped in [8] [9] [10] and as a result, the important restriction 

0f∞ ≠  of the solution was hidden so far. 

3.1. Boundary Conditions 

The boundary conditions can be found e.g., in [3] [5] [6] [8]-[13]. From there a 
variety follows of the definitions for c1 and c2, such as based upon [8] [9] [10] [13]: 
1) quantisation of magnetic flux through the unit cell: 2 2

0r vrj rf kξ∞→
= −  and 2) 

zero current at its interface ( ) 0rj R = :  

( ) ( )1

0

1
1 2

0

, ,R R

v v

K f I ff fc c
k c k c

ρ ρ
ξ ξ

∞ ∞∞ ∞= =             (14) 

( ) ( ) ( ) ( )10 1 1 1 .R v v Rc I f K f I f K fρ ξ ξ ρ∞ ∞ ∞ ∞= −           (15) 

In order to stay focused and limit the size of the paper, below I simply accept 
Equations (14), (15) and will study namely this case in more detail. With the 
constants c1 and c2 defined, the solution allows calculating the local quantities as 
well as the mean quantities: equilibrium magnetic field, magnetisation, etc. In 
this paper I focus on magnetisation. 

3.2. Variational Method 

In the variational method Equation (5) in fact replaces the unknown ( )f r  
(which is otherwise obtained by solving the GL equations) and thus eliminates 
solving the first GL equation; instead one focuses on solving e.g., for ( )kzb r  
(second GL equation) and for f∞ , vξ . While drawbacks of the approach [5] [6] 
are treated in [8] [9] [10], I find that all three publications [8] [9] [10] are not 
easy to read as in turn they have crucial errors preventing the reader from wider 
use of this otherwise excellent method. For instance, in [8] [9] and [10] at least 
Equations (11), (13), (15); (22), (24), (28) and (2.18), (2.20) respectively have er-
rors that can be decisive for the result. These errors are eliminated here and cor-
rect equations are presented thus facilitating broader use of the method. The 
analytical expressions for the energy density associated with the change in the 
order parameter near centers of vortices (Equations (15) [6] and (12) [8] respec-
tively) though they look slightly different, are identical. On the other hand, Equ-
ation (20) of [9] is a substantial improvement of corresponding Equation (14) of 
[6] as it is explained in [8] [9] [10] (note that the corresponding Equation (11) 
[8] contains a typing error, the correct equations are: (2.16) in [10], (20) in [9] 
and Equation (16) here). 

From Equation (12) at 0r = , ( )0krh  follows and since ( )0em k krF b h= , one 
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gets (from Equations (6)-(8), (14) (15) here) [5] [6] [8] [9] [10]:  

( ) ( )1 0 2 0 ,em k v vF b c I f c K fξ ξ∞ ∞ = +                 (16) 

( ) ( ) ( )
( )

22 22 2
121
2

1 1 1

1 121 ln 1 ,
2 2 2 2

k
core

f b f bb f fF f
b b k b

∞ ∞∞ ∞
∞

− +  
= + − + + +   +  + 

 (17) 

with 2 2
R vRρ ξ= +  and 2

1 k vb b kξ= . 
Minimising the free energy density F of superconductor, Equations (6)-(8), 

(16) (17), with respect to the variational parameters f∞  and vξ  (at fixed k and 
b ) allows establishing dependencies of f∞  and vξ  on k and b  in a 
self-sufficient way [5] [6] [8] [9] [10], see detailed in Figures 1-4 and Annex. 
Once these are established, the order parameter is defined (Equation (5)) and the 
dependence of magnetisation on k and b  follows, see Equations (20)-(23) (24). 
In [5] [6] [8] [9] [10], the accurate dependencies of f∞  and vξ  on k and b  
are missing, instead inaccurate interpolation fits are published in both cases as 
explained below and clear from Figures 1-4. This prevents accurate calculation 
of magnetisation in particular. In this paper the minimising of F is done numer-
ically (using Solver in Excel), results are presented in a clear, traceable form and 
in more detail as compared to [5] [6] [8] [9] [10] and they yield the following. 

3.3. Variational Parameter f∞ 

At any 5 200k≤ ≤  all obtained data points of the dependence ( ),f b k∞  col-
lapse at one curve fitted here by a cubic spline, see Figure 1 and Table A1. For 
this reason no data for the individual splines is given here for this range. This 
simplification causes an estimated error of 0.5% as explained in Section 5 and 
the error can be reduced by using more accurate data from the minimising of F. 
Furthermore, the obtained data are in reasonable agreement with that from [[8], 
Equation (14)] (numbered as Equation (18) here), except at lower  
( 0.25b < ) and at higher ( 0.75b > ) fields, see Figure 1:  

( ) ( )
1 2

2 4
2

1 1 1.7 1 1.4 1
2.8 0.985

.b bf b b b∞

       = − + − −               
    (18) 

At 12 5k k≤ <  the obtained dots deviate from this curve and the error when 
using Equation (18) can reach 5% as Figure 1 exemplifies. Therefore in this 
range instead of using Figure 1 or Equation (18), I recommend using Figure 1 
or more accurately the data from Annex e.g., by constructing the individual 
splines. Importance of this correction becomes clear in Section 5. For the above 
reasons I am convinced that Equation (18) does not approximate the depen-
dence of ( ),f b k∞  with “an accuracy of about 0.5% for arbitrary k and b” as 
stated in [8] [9] [10]. In addition, I find unsatisfactory the agreement of the ob-
tained data with the Equation (24) of [6]:  

( ) ( )4
1f b b∞ = − . 

3.4. Variational Parameter ξv 

Minimisation of F with respect to vξ  at 0b →  shows that Equation (15) of 
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[8] is less accurate than the original Equation (16) of [5], especially at k < 10 
(and that the error exceeds 1% up to k = 50), see Figure 2. Therefore, the correct 
equation to calculate the dependence ( )0v kξ  for 0b →  at any k in an ideal 
type II superconductor is [5]:  

( )
( )

1
2 2
0 0

0 2
1 0

.2 1 v
v

v

K
k

K
ξ

ξ
ξ

 
= − 

  
                 (19) 

The obtained (by minimizing F) dependence ( ),v b kξ  is similar and differ-
ent from those described in [3] [5]. On one hand at 75k ≥  all data points col-
lapse practically at one curve, see Figure 3 and Table A2 in Annex. For this 
reason only one cubic spline fit (namely, k = 100) is shown, the error of this 
simplification is below 0.5%. 

The agreement of the obtained data with [[8], Equation (13)] is unsatisfactory, 
see Figure 3 and therefore I recommend calculating ( ),v b kξ  for 75k ≥  and 
any value of magnetic field b  from the spline fit, Figure 3 and Table A2 in 
Annex. 

On the other hand at 50k <  the obtained dependence ( ),v b kξ  is rather 
different from those described in [5] [6] [8] [9] [10] and from the single curve 

75k ≥  in Figure 3. For instance, the relative difference for k = 50 and 0.75 
reaches 50% as Figure 4 shows. 

Based on this study, I conclude that none of the Equations (13)-(15) in [8] 
(repeated as (22)-(24) in [9] and as (2.18)-(2.20) in [10]) is accurate for arbitrary 
values of 12k k≥  and over the entire range of magnetic fields 0 1b≤ ≤ . In-
stead I recommend using more accurate data from this paper, see Annex. The 
most accurate results are obtained through minimising the free energy density F 
of superconductor with respect to the variational parameters f∞  and vξ  as 
described in this paper. This step is a must when aiming at the agreement better 
than 1% between magnetisation calculated symbolically and numerically, see 
Section 5. 

4. Magnetisation (Derived Symbolically) 
4.1. Variational Approach 

The applied (thermodynamic, equilibrium) magnetic field ( )
2ka k

k

Fb b
b

∂
=

∂
  

from Equations (14)-(17) according to [5] [6] [8] [9] [10] is:  

( ) ( ) ( ) ,em core
ka k ka k ka kb b b b b b= +                   (20) 

with [8]:  

( ) ( ) ( )1 2 ,em em em
ka k ka k ka kb b b b b b= +                  (21) 

( ) ( ) ( )1
1 0 2 0

1 ,
2

em
ka k v vb b c I f c K fξ ξ∞ ∞ = +               (22) 

( )
2

2 0
2

1

,
2

em
ka k

R

cb b
kb ρ

−

=                      (23) 
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( )
( )

( )
( )

22 2 2 2 2
1

2 32
1 1 1 1

2 31 12ln 1
2 2 2 2 2 2

core v
ka k

f bkf f f fb b
b b b k b

ξ ∞∞ ∞ ∞ ∞
  + − − = + − + +  +  + + 

(24) 

and 2
1 k vb b kξ= . Since Equations (21)-(24) define the applied field ( )ka kb b , the 

magnetisation is:  

( ) ( )0k k ka k km b b b b− = −  or: ( ) ( )0 ,k ka ka k kam b b b b− = −  ( ) ( )0
0 .

2k
c

M B
m b

B
= (25) 

Finally, after re-normalisation of Equation (25), one obtains:  

( ) ( )0 am b b b b− = −  with ( ) ( )0 0 2 .cm b M B B=          (26) 

Namely the magnetization ( )0m b−  calculated from Equation (25) after 
correcting the error (see Section 4.2) becomes the magnetization ( )1m b−  
compared in Section 5 to those calculated numerically and with other symbolic 
methods. 

4.2. The Error and the Correction 

The error (present in Equations (10)-(26) at 0f∞ → , see. Equations (10)-(11)) 
is evident from the Abrikosov solution of the linearized GL equations [7] stating: 

( ) ( )4 4 2

1,
2 1

a
a

A

bm m b k
k β

−
= =

−
               (27) 

for any k and 1b →  with Aβ  equal to 1.1803 (1.1596) for the vortex lattice 
with square (hexagonal) unit cells [4] and to 1.1576 for the lattice with circular  

cells [9]; 
2

a
a

c

Bb
B

= , 4
4

2c

Mm
B

= . As the examples in Section 5 will illustrate, at  

1b →  the line 5 ([8] [9] [10] representing the magnetisation calculated from 
Equations (25) (26) without corrections) crosses the line 4 representing the m4 
and moreover it crosses the horizontal axis at 0.985 (instead of at 1 as Equation 
(27) implies). The error in ( )0m b  is visible at least at 0.5 1ab≤ ≤ . 

In this paper the error is eliminated in the following way. The Equations 
(21)-(26) are only valid at 0f∞ ≠ , see Equation (11). Otherwise, Equation (27) 
is the correct symbolic solution of GL equation(s) providing the missing addi-
tional conditions to Equations (21)-(26) and simply stating that in the plane 

( )1 am b−  the point mc2 on the true magnetisation curve 1m  has the following 
coordinates: ( )2 1,0cm , in other words: 1 1 0

abm
=
=  and at 1b →  

( )
4 4

2

d 1 ,
d 1 2 1a a A

m m
b b k β

−
= =

− −
                 (28) 

the 1st derivative through this point of the true magnetisation curve should be 
constant set by Equation (28) and that only depends on k and on the Abrikosov 
parameter 1Aβ >  [7]. Moreover, using Equation (30) and minF  (that follows 
from the minimising the free energy in Equations (16) (17)), we can now define 
more accurately the vague condition “ 1b → ” (or “1 1ab−  ” [3]) as:  

3 1b b≤ ≤  with 3b  being defined by the condition: min 4F F= .   (29) 
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From [[7], Equation (19)] it is clear that at 3 1b b≤ ≤  the free energy density 
(see Equations (6)-(8)) is (at minimum when Aβ  is as close to 1 as possible):  

( )
( )

2

2
4 2

11 .
2 1 2 1

k
k

A

b
F b

k β

 −
 = + −
 + −
 

              (30) 

From Equations (30) and (16) (17) it is easy to check that for 1.1576Aβ = , 
200k =  at 0.5 1b≤ ≤  always min 4F F> , which means that in this range Equa-

tion (27) is more accurate than Equation (26). On the other hand, at  
0 0.5b≤ ≤  Equation (26) is more accurate than Equation (27), since here 

4 minF F>  (with minF  obtained by minimising F, see Equations (16) (17)). More 
generally, Equation (27) must be used at 3 1b b≤ ≤  instead of Equation (26). 

A smooth transition from Equation (26) to Equation (27) can be achieved in 
several ways. In this paper I use the following approach. So far calculated from 
Equation (26) magnetisation 0 0.985

0
abm
=

= . Thus Equation (26) produces the 
erroneous value of the upper critical field *

2cb  (see Section 6.2) due to ignoring 
the restriction 0f∞ ≠ , see the condition by Equations (10) and (11). Replacing 
b  by 0.985b  (Equation (33)) when plotting ( )m b  satisfies the condition 
set by Equation (27) at 1b → : 0 1

0
abm
=
= . This step shifts the entire magneti-

sation curve (Equation (26)) parallel to itself and slightly to the right as exempli-
fied in Section 5. Moreover, at 1b →  calculated from Equation (26) magneti-
sation should have the same first derivative as set by Equation (28). This is ob-
viously not the case as one can see in Section 5 (not only magnetisation curve 
calculated from [8] [9] [10] crosses the horizontal axis at 0.985mb = , but it has 
the slope different from that set by Equation (27)). 

In this paper a compliance with this condition (Equation (28)) is achieved by 
introducing the correction: ( )1 00.985m m b= ⋅ , where ( )0m b  comes from 
Equation (26). This correction slightly rotates the entire magnetisation curve 
around the point ( )2 1,0cm , so that the derivative of the magnetisation m1 be-
comes equal to that set by Equation (28) and the transition from m1 to m4 is 
smooth since the higher derivatives are preserved. Furthermore, used for the 
comparison (in Section 5) magnetisation m2 from [[3], Figure 7] is calculated 
numerically for the triangular vortex lattice, while the obtained here results are 
for the vortex lattice of circular cells, therefore accounting the respective ratio of 
the Abrikosov parameters (Equation (27)), more accurately: ( )1 00.983m m b= ⋅  
in this case. Clearly, more sophisticated methods of achieving the same result 
can be used (all required math for combining the solutions is present e.g., in 
[13]), but they are beyond the scope of this paper. 

In conclusion, the correction makes the obtained solution compliant with [7] 
[13] (the same point mc2 and the same direction of the magnetisation curve at 
this point). It should be noted that this correction of the magnetisation uses the 
symbolic form of the theoretical result [7] at 1b →  and therefore the solution 
obtained here remains self-sufficient (even though it now uses two solutions of 
GL equations: [8] [9] [10] and [7]). So far I did not use any numerical results 
(the fact that calculated numerically magnetisation m2 also agree with the condi-
tions of Equations (27), (28) only means that these conditions are just). Cor-
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rected this way magnetisation m1 is in excellent agreement with the conditions 
of Equations (27), (28) and is further compared to that calculated numerically 
(and with other symbolic methods) in Figures 5-8. 

5. Comparison and Discussion 

In Figures 5-8 the magnetisation m1 is compared to that calculated numerically 
[3] and to those calculated symbolically [7] [8] [9] [10] through the entire range 
of magnetic fields 0 1b≤ ≤  and representative range of the GL parameter  

12 200k k≤ ≤  (same range as in [3]). In each figure the magnetisation changes 
between 0 and 1 1c cm b− =  (further defined in Section 6.1). Moreover, in this range 
of k the 1cb  changes by more than 4 orders in magnitude: between 1 and 

57.2 10−× . An overview can be found elsewhere [3] [4] of the general features of 
reversible magnetisation, of its dependence on k and on magnetic field, etc. as fol-
lows from numerical solving of GL equations and these are not discussed here. In-
stead, I focus on the validation of the obtained analytical solution (Equations 
(20)-(26) complemented by Equations (27)-(30) and with the data in Figures 1-4 
and Annex). This is achieved by comparing magnetization m1 to magnetisation 
calculated using other methods. Namely, in Figures 5-8 I compare m1 to m2 - m5 
being respectively magnetisation calculated from: this work (m1); [3] [4], numeri-
cally for hexagonal unit cells (m2); [[3], Equation (19)] from the interpolation fit 
for m2 with limited validity (m3); [7], Equation (27) here (m4) and [8] [9] [10] as 
published (m5). 

As clear from Figures 5-8, for any value of the GL parameter 12k k≥  and 
over the entire range of magnetic fields 0 1mb b≤ = ≤  excellent agreement be-  

tween m1 and m2 is achieved: the relative difference 1 2

2

m m
m
−

 is below 1.5%  

everywhere (except in the narrow range: 0 0.01mb≤ ≤  where it is below 4%, see 
further elaborated in Section 6.1). 

5.1. Ginzburg-Landau Parameter k k12 1≤ ≤  

Representative for the range of 12 1k k≤ ≤  (with 1 10.58 1c cm b≤ = ≤ , see [[3], 
Figure 1]) set of the magnetisation curves at k = 0.85 is shown in Figure 5(a). 

The relative difference 1 2

2

m m
m
−

 is below 1.5% in the entire range  

0 1mb b≤ = ≤  (except in the range: 0 0.01mb≤ ≤  where it is below 4%, see 
further elaborated in Section 6.1). As expected [3], the interpolation fit (m3) to-  

tally fails to describe the data (m2) quantitatively, since k < 3 and thus 3 2

2

m m
m
−

  

is too high. The data represented by magnetisation m1 (and m2) are in good  

agreement with these represented by m4 at 0.8 1b≤ ≤  (so that both 1 4

4

m m
m
−  

and 2 4

4

m m
m
−

 e.g., at 0.8b =  are below 0.7%, even though 3 1b =  as k < 1 in  
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(a) 

 
(b) 

Figure 5. (a). Calculated for k = 0.85 magnetisation m as function of the resulting field 

mb b= : 1—as proposed here (m1); 2, 3—from the numerical solution, the dashed black 
line (m2) restored from [[3], Figure 7] and the dashed green line (m3) from the fit—[[3], 
Equation (19)]; 4—from Equation (27) (m4); 5—from [8] [9] [10] (dashed double dotted 
line, m5). (b). Calculated for k = 1.2 magnetisation m as function of the resulting field 

mb b= : 1—as proposed here (m1); 2, 3—from the numerical solution, the dashed black 
line (m2) restored from [[3], Figure 7] and the dashed green line (m3) from the fit—[[3], 
Equation (27)]; 4—from Equation (27) (m4); 5—from [8] [9] [10] (dashed double dotted 
line, m5). The line numbering is the same as in Figure 5(a). 
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(a) 

 
(b) 

Figure 6. (a) Calculated for k = 2 magnetisation m as function of the field mb b= : 1—as 
proposed here (m1); 2, 3—from the numerical solution, the dashed black line (m2) res-
tored from [[3], Figure 7] and the dashed green line (m3) from the fit—[[3], Equation 
(19)]; 4—from Equation (27) (m4); 5—from [8] [9] [10] (dashed double dotted line, m5). 
The line numbering is the same as in Figure 5(a). (b). Calculated for k = 5 magnetisation 
m as function of the field mb b= : 1—as proposed here (m1); 2, 3—from the numerical 
solution, the dashed black line (m2) restored from [[3], Figure 7] and the dashed green 
line (m3) from the fit—[[3], Equation (19)]; 4—from Equation (27) (m4); 5—from [8] [9] 
[10] (dashed double dotted line, m5). The line numbering is the same as in Figure 5(a). 
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(a) 

 
(b) 

Figure 7. (a) Calculated for k = 10 magnetisation m as function of the field mb b= : 1—as 
proposed here (m1); 2, 3—from the numerical solution, the dashed black line (m2) res-
tored from [[3], Figure 7] and the dashed green line (m3) from the fit—[[3], Equation 
(19)]; 4—from Equation (27) (m4); 5—from [8] [9] [10] (dashed double dotted line, m5). 
The line numbering is the same as in Figure 5(a). (b) Calculated for k = 50 magnetisation 
m as function of the field mb b= : 1—as proposed here (m1); 2, 3—from the numerical 
solution, the dashed black line (m2) restored from [[3], Figure 7] and the dashed green 
line (m3) from the fit—[[3], Equation (19)]; 4—from Equation (27) (m4); 5—from [8] [9] 
[10] (dashed double dotted line, m5). The line numbering is the same as in Figure 5(a). 
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(a) 

 
(b) 
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(c) 

Figure 8. (a) Calculated for k = 100 magnetisation m as function of the field mb b= : 
1—as proposed here (m1); 2, 3—from the numerical solution, the dashed black line (m2) 
restored from [[3], Figure 7] and the dashed green line (m3) from the fit—[[3], Equation 
(19)]; 4—from Equation (27) (m4); 5—from [8] [9] [10] (dashed double dotted line, m5). 
The line numbering is the same as in Figure 5(a). (b) Calculated for k = 200 magnetisa-
tion m as function of the field mb b= : 1—as proposed here (m1); 2, 3—from the numer-
ical solution, the dashed black line (m2) restored from [[3], Figure 7] and the dashed 
green line (m3) from the fit-[[3], Equation (19)]; 4—from Equation (27) (m4); 5—from 
[8] [9] [10] (dashed double dotted line, m5). The line numbering is the same as in Figure 
5(a). (c) Fragment of the calculated for k = 200 magnetisation m as function of the field 

mb b= , see Figure 8(b) for more. The line numbering is the same as in Figure 5(a). 

 
this case). It is clear from the figure that m5 also fails to describe quantitatively 
the data represented by m1 (and m2): e.g., at 0.25mb =  the relative difference  

5 2

2

m m
m
−

 is 26.5%, which is not competitive and not what one expects after  

reading [8] [9] [10]. 

5.2. Ginzburg-Landau Parameter k1 2≤ ≤  

Representative for the range of 1 2k≤ ≤  (with 1 10.2 0.58c cm b≤ = ≤ , see [[3], 
Figure 1]) set of the magnetisation curves 1.2k =  and 2k =  is shown in 
Figure 5(b) and Figure 6(a) respectively. 

In Figure 5(b) and Figure 6(a) the relative differences 1 2

2

m m
m
−

 are below  

1.1% and 1.3% respectively in the entire range 0 1mb b≤ = ≤  (except in the 
range: 0 0.01mb≤ ≤  where they are below 4% and 3.2% respectively, as further 
elaborated in Section 6.1). As expected [3], the interpolation fit (m3) fails to de-  
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scribe the data (m2) quantitatively, since k < 3 and thus 3 2

2

m m
m
−

 is high. The  

data represented by m1 (and m2) are in good agreement with these represented 

by m4 at 0.8 1b≤ ≤  (so that both 1 4

4

m m
m
−

 and 2 4

4

m m
m
−

 e.g., at 0.8b =   

are below 0.4% (Figure 5(b)) and below 0.2% (Figure 6(a)), with 3 0.94b =  
and 0.75 respectively). It is clear from the figures that m5 fails to describe quan-
titatively the data represented by m1 (and m2): e.g., at b = 0.25 the relative dif-  

ference 5 2

2

m m
m
−

 is 24.5% (Figure 5(b)) and 16.1% (Figure 6(a)), which is not  

competitive and not what one expects after reading [8] [9] [10]. 

5.3. Ginzburg-Landau Parameter k2 5≤ ≤  

Representative for the range of 2 5k≤ ≤  (with 1 10.045 0.2c cm b≤ = ≤ , see [[3], 
Figure 1]) set of the magnetisation curves 2k =  and 5k =  is shown in Figure 
6(a) and Figure 6(b) respectively. In Figure 6(b) the relative difference  

1 2

2

m m
m
−

 is below 0.5% in the entire range of magnetic fields 0 1mb b≤ = ≤   

(except in the range: 0 0.01mb≤ ≤  where it is below 2% respectively, as further 
elaborated in section 6.1). As expected [3] the interpolation fit (m3) describes the  

data (m2) quantitatively, since k > 3 and thus 3 2

2

m m
m
−

 is small, so both are  

represented by almost the same line in the figure. The data represented by m1 
(and m2) are in good agreement with these represented by m4 at 0.7 1b≤ ≤  (so  

that both 1 4

4

m m
m
−

 and 2 4

4

m m
m
−

 e.g., at 0.7b =  are below 0.3%, with  

3 0.6b = ). It is clear from Figure 6(b) that m5 still fails to describe quantitatively 
the data represented by m1 (and m2): e.g., at 0.25mb =  the relative difference  

5 2

2

m m
m
−

 is 7%, which is not competitive and not what one expects after read-  

ing [8] [9] [10]. 

5.4. Ginzburg-Landau Parameter k5 10≤ ≤  

Representative for the range of 5 10k≤ ≤  (with 1 10.014 0.045c cm b≤ = ≤ , see 
[[3], Figure 1]) set of the magnetisation curves at 5k =  and 10k =  is shown in 
Figure 6(b) and Figure 7(a) respectively. In Figure 7(a) the relative difference  

1 2

2

m m
m
−

 is below 1% in the entire range 0 1mb b≤ = ≤  (except in the range:  

0 0.01mb≤ ≤  where it is below 1.3% respectively, as further elaborated in sec-
tion 6.1). As expected the interpolation fit (m3) describes the data (m2) quantita-  

tively, since k > 3 and thus 3 2

2

m m
m
−

 is small [3] so both are represented by  
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almost the same line in the figure. The data represented by m1 (and m2) are in 
good agreement with these represented by m4 at 0.7 1b≤ ≤  (so that both  

1 4

4

m m
m
−

 and 2 4

4

m m
m
−

 e.g., at 0.7b =  are below 0.4%, with 3 0.54b = ). It  

is clear from Figure 7(a) that m5 describes quantitatively the data represented by  

m1 (and m2): with larger relative difference 5 2

2

m m
m
−

 of e.g., 4% at b = 0.25 (as 

compared to 1 2

2

m m
m
−

) and with visible error in the magnetisation’s first deriv-  

ative (on b ). 

5.5. Ginzburg-Landau Parameter k10 50≤ ≤  

Representative for the range of 10 50k≤ ≤  (with 4
1 18.8 10 0.014c cm b−× ≤ = ≤ ) 

set of the magnetisation curves at 10k =  and 50k =  is shown in Figure 7(a)  

and Figure 7(b) respectively. In Figure 7(b) the relative difference 1 2

2

m m
m
−

 is  

below 0.6% in the entire range 0 1mb b≤ = ≤ . As expected the interpolation fit  

(m3) describes the data (m2) quantitatively, since k > 3 and thus 3 2

2

m m
m
−

 is  

small [3] so both are represented by almost the same line in the figure. The data 
represented by m1 (and m2) are in good agreement with these represented by m4  

at 0.7 1b≤ ≤  (so that both 1 4

4

m m
m
−

 and 2 4

4

m m
m
−

 e.g., at 0.7b =  are be-  

low 0.5%, with 3 0.51b = ). It is clear from Figure 7(a) that m5 describes quanti-
tatively the data represented by m1 (and m2): with larger relative difference  

5 2

2

m m
m
−

 of e.g., 3% at b = 0.25 (as compared to 1 2

2

m m
m
−

) and the error in the  

magnetisation first derivative (on b ) is present. 

5.6. Ginzburg-Landau Parameter k50 200≤ ≤  

Representative for the range of 50 200k≤ ≤  (with  
5 4

1 17.2 10 8.8 10c cm b− −× ≤ = ≤ × ) set of the magnetisation curves at 100k =  and 
200k =  is shown in Figure 8(a) and Figure 8(b) respectively. Since the accu-

rate numerical data for 100k =  are absent [3], we use m3 instead of m2 in Fig-  

ure 8(a). The relative difference 1 3

3

m m
m
−

 is below 1% (Figure 8(a)) and  

1 2

2

m m
m
−

 below 0.6% (Figure 8(b)) in the entire range 0 1mb b≤ = ≤ . The data  

in Figure 8(a) represented by m1 (and m3) are in good agreement with these  

represented by m4 at 0.7 1b≤ ≤  (so that both 1 4

4

m m
m
−

 and 3 4

4

m m
m
−

 e.g.,  

at 0.75b =  are below 1%, with 3 0.52b = ). The data in Figure 8(b) represented 
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by m1 (and m2) are in good agreement with these represented by m4 at  

0.7 1b≤ ≤  (so that both 1 4

4

m m
m
−  and 2 4

4

m m
m
−

 e.g., at 0.7b =  are below  

0.3%, with 3 0.5b = ). It is clear from Figure 8(a) that m5 describes quantitatively  

the data represented by m1 (and m3) with larger relative difference 5 2

2

m m
m
−

 of 

e.g., 2% at b = 0.25 (as compared to 1 3

3

m m
m
−

) and the error in the magnetisa-  

tion 1st derivative (on b ) is present. It is clear from Figure 8(b) that m5 de-
scribes quantitatively the data represented by m1 (and m2) with larger relative  

difference 5 2

2

m m
m
−

 of e.g., 4% at b = 0.25 (as compared to 1 2

2

m m
m
−

) and the  

error in the magnetisation’s first derivative (on b ) is present. 

5.7. Ginzburg-Landau Parameter k 200=  

The fragment of the magnetisation curve at k = 200 exemplifies that the error in 
the 1st derivative of the magnetization m5 is present at highest values of k and  

results in the noticeable difference 5 1

1

m m
m
−

. The noise of the magnetisation m2  

caused by the digitalisation of the data [[3], Figure 7] is also visible in the figure. 
To summarise, over the entire ranges of the GL parameter 12 1000k k≤ ≤  

and of magnetic field 0 1mb b≤ = ≤  excellent agreement between m1 and m2 is  

achieved: the relative difference 1 2

2

m m
m
−  is below 1.5% everywhere (except at  

the narrow range: 0 0.01mb≤ ≤  where it is below 4% as elaborated in section 
6.1). This result validates the advanced symbolic approach of this paper. On the 
other hand, for the first time numerical results [3] for hexagonal and circular 
unit cells are accurately validated over the entire ranges of k and mb  in a trans-
parent way with the (essentially independent) symbolic method of solving GL 
equations. Moreover, I find that the obtained close agreement of 1m  and 2m  
makes some of the interpolation fits [[3], Equations (15)-(23)] obsolete. Clearly, 
the remaining discrepancy of 1m  and 2m  can be reduced by expanding the 
data sets in Annex (the simplification error is now about 0.5%), making the di-
rect comparison of the underlying data, revising the symbolic solution and the 
boundary conditions, etc. This however is beyond the scope of this paper. It 
must be noted, that magnetisation calculated from Equations (20)-(26) is rather 
sensitive to the errors in calculating the variational parameters. Therefore, in 
order to avoid the interpolation errors in calculating f∞  and vξ  (that can be 
caused e.g., by splines), values of f∞ , vξ  and m are best calculated at exactly 
the same values of b  and k. 

Presented in Annex data for the dependencies of f∞  and vξ  on k and b  
contain the simplification error of up to 0.5% (caused by the limit in the size of 
the paper). I recommend that when aiming at the agreement better than 99% 
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between magnetisation calculated symbolically and numerically, one has to use 
more accurate data obtained through the minimising the free energy density F of 
superconductor with respect to the variational parameters f∞  and vξ . Thus 
obviously “In order to achieve self-consistency in the theory the dependencies 

( ),v k bξ  and ( ),f k b∞  should be obtained by numerically minimising the 
function ( ), , ,vF k b fξ ∞  with respect to vξ  and f∞ ” [8] [9] [10], to which I 
add: the minimisation procedure is straightforward, use Equations (6) (7) (8), 
(16) (17) and a standard optimisation program, such as commonly available 
Solver in Excel. I find the quote above missing the “how” part (almost as to 
write: in order to get solution of GL equations, solve them). 

6. The Critical Fields 

6.1. The Lower Critical Field bc1 

In this paper I calculate values of the field bc1 from Equations (25) (26) typically 
at 61 10b −< × , since at 0b =  the Equation (25) diverges. In Figure 9 the boxes 
show calculated this way dependence ( )11cb k  of the lower critical field bc1. The 
black solid line is calculated from the fit to the numerical results [3] [4]:  

( ) ( ) ( ){ }2
12 0 1 2ln exp ln lncb k c c k c kα∞  = + + − − −          (20) 

with 0.49693α∞ = ; 0 0.41477c = ; 1 0.775c = ; 2 0.1303c = . 
The red dashed line is calculated from the symbolic expression for isolated 

flux line [5] [6]:  

( ) ( ) ( )2 2 2
13 0 0 0 0 1 08 2 .c v v v vb k K k Kξ ξ ξ ξ−  = + +            (32) 

 

 
(a)                                                  (b) 

Figure 9. Calculated dependence on k of the lower critical field bc1, (a): boxes—this paper (bc10); the solid black 
line—numerically, Equation (31) (bc12); the dashed line—Equation (32) (bc13); (b): fragment of the same, the black cir-

cles—the relative “error”, %: 11 12

12

c c

c

b b
b
− . 
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In this range of k the bc1 changes by 5 orders of magnitude, so I find the 
agreement between 11cb , 12cb  and 13cb  reasonable (at k < 0 there is still room 
for improvement). 

6.2. The Upper Critical Field bc2 

As noted [8] [9] [10], and clear from Figures 5-8 and Annex, the value of the 
upper critical field *

2cb  following from the symbolic approach [8] [9] [10] is 
1.5% lower than the true value of 2 1cb =  and therefore the correction is intro-
duced in order to have the same upper critical point:  

*
2 2 20.985 .1corr

c c cb b b= = =                   (33) 

This correction is dealt with in section 4.2. Moreover, Figure 10 shows the 
values of Fmin, (derived from Equations (16) (17) through the minimisation pro-
cedure) corresponding to the data in Annex. The box on each curve corresponds 
to the value of magnetic field 3b  (Equation (29)), and separates the areas of va-
lidity for Equations (25) (26) and (27) valid respectively to the left or to the right 
from the box for any k > 1. Presented values of Fmin can be used as a reference 
when comparing different methods of solving GL equations. 

Finally, in order to illustrate the common feature of the ideal superconducting  
 

 
Figure 10. Minimum value Fmin of the free energy density F (Equation (16) (17)) as func-
tion of the resulting magnetic field bm for the selected values of k (shown next to the cor-
responding lines). 
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materials (in this case homogeneous, bulk, elliptically shaped, edge- and pin-free, 
placed in uniform magnetic field), in Figure 11 I show the magnetisation calcu-
lated for selected values of k = 34; 50 and 75 (typical for Nb3Sn; NbTi and 
REBCO respectively) and assuming vortex lattice with hexagonal unit cells. The 
solid lines represent m1 as proposed here; the dashed line – m3 (interpolated 
from the fit [[3], Equation (19)]). The scaling factor m40 for the magnetisation in 
all cases is derived from Equation (28) (assuming 0ab = ), in addition to that 
the scaling factor of 6 is used in order to keep the magnetisation values below 1 
in the figure. Scaled this way magnetic field dependence of the magnetisation for 
these very different materials in the field range 0.001 1b≤ ≤  collapse practical-
ly at the same curve. At lower magnetic fields there is a stratification depending on 
the k value, besides m3 gives errors as expected [3] that are higher at lower k. 

7. Conclusion 

Known symbolic method [5] [6] [8] [9] [10] of solving Ginzburg-Landau equa-
tions has limited validity. Namely, assumed dependencies (interpolation fits) for 
the variational parameters f∞  and vξ  on the Ginzburg-Landau parameter k  
 

 
Figure 11. Calculated for k = 34, 50 and 75 magnetisation as function of the field mb b= : 
the solid lines—m1 as proposed here; the dashed line—m3 (interpolated from the fit [[3], 
Equation (19)]). The scaling factor for the magnetisation in all cases is derived from Equ-
ation (28), in addition to that the scaling factor of 6 is used in order to keep the magneti-
sation ranging from 0.01 to 1 in the figure. The ±3% relative error (the vertical bars) is 
guide for an eye. 
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and on magnetic flux density b  are inaccurate and result in unacceptably high 
errors (reaching 25% and more). This limits applicability of otherwise excellent 
method. In the paper I eliminate several errors, extract and combine accurate 
symbolic solutions from the above and from [7] and provide for the first time 
precise dependencies for f∞  and vξ  on k and b  together with the simple 
and validated way of minimising the free energy density of superconductor. Re-
sulting good agreement (98.5% for the entire range of magnetic flux density:  
0.01 1b≤ ≤  and any value of the parameter 1 2k > ) between the advanced 
symbolic and the known numerical solutions of Ginzburg-Landau equations va-
lidates both and hopefully will result in wider use of the symbolic approach. 
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Annex 

Accurate dependencies of the variational parameters ( ),v k bξ  and ( ),f k b∞  
obtained from the minimising the free energy density F, see Equations (16) (17) 
(Tables A1-A4). The dimensional and dimensionless quantities and scaling fac-
tors (Table A5). 

Note that in order to simplify comparisons with [8] [9] [10] in Tables A1-A4 
the values of b  are not corrected (by 0.985). 
 

Table A1. Spline data for the calculated variational parameter f∞  at 0.75 200k≤ ≤ . 

k = 0.75 k = 0.85 k = 1.2 k = 2 5 ≤ k ≤ 200 

b  f∞  b  f∞  b  f∞  b  f∞  b  f∞  

7.26E−6 1.000E+0 5.95E−6 1.000E+0 2.96E−6 1.000E+0 1.05E−6 1.000E+0 5.80E−10 1.000E+0 

3.46E−4 1.001E+0 3.46E−4 1.001E+0 3.46E−4 1.001E+0 3.46E−4 1.001E+0 3.456E−4 1.001E+0 

1.12E−3 1.001E+0 1.12E−3 1.001E+0 1.12E−3 1.002E+0 1.12E−3 1.002E+0 1.121E−3 1.002E+0 

4.00E−3 1.004E+0 3.68E−3 1.004E+0 3.68E−3 1.004E+0 2.00E−3 1.003E+0 3.682E−3 1.005E+0 

1.00E−2 1.008E+0 1.00E−2 1.009E+0 1.00E−2 1.010E+0 3.68E−3 1.005E+0 1.287E−2 1.014E+0 

2.50E−2 1.017E+0 2.50E−2 1.018E+0 2.50E−2 1.020E+0 7.00E−3 1.008E+0 2.500E−2 1.024E+0 

5.00E−2 1.029E+0 5.00E−2 1.030E+0 5.00E−2 1.034E+0 1.00E−2 1.011E+0 5.000E−2 1.042E+0 

7.00E−2 1.036E+0 7.00E−2 1.038E+0 7.00E−2 1.043E+0 2.00E−2 1.019E+0 7.000E−2 1.053E+0 

1.00E−1 1.046E+0 1.00E−1 1.048E+0 1.00E−1 1.054E+0 3.50E−2 1.029E+0 1.000E−1 1.065E+0 

1.50E−1 1.056E+0 1.50E−1 1.058E+0 1.50E−1 1.064E+0 5.00E−2 1.038E+0 1.500E−1 1.073E+0 

2.00E−1 1.058E+0 2.00E−1 1.060E+0 2.00E−1 1.065E+0 7.00E−2 1.048E+0 2.000E−1 1.071E+0 

2.25E−1 1.056E+0 2.25E−1 1.058E+0 2.25E−1 1.062E+0 1.00E−1 1.060E+0 2.250E−1 1.066E+0 

2.50E−1 1.053E+0 2.50E−1 1.055E+0 2.50E−1 1.057E+0 1.50E−1 1.070E+0 2.500E−1 1.059E+0 

3.00E−1 1.042E+0 3.00E−1 1.042E+0 3.00E−1 1.042E+0 2.00E−1 1.068E+0 3.000E−1 1.040E+0 

3.50E−1 1.025E+0 3.50E−1 1.024E+0 3.50E−1 1.021E+0 2.25E−1 1.064E+0 3.500E−1 1.016E+0 

4.00E−1 1.002E+0 4.00E−1 9.996E−1 4.00E−1 9.939E−1 2.50E−1 1.058E+0 4.000E−1 9.860E−1 

4.50E−1 9.738E−1 4.50E−1 9.701E−1 4.50E−1 9.621E−1 3.00E−1 1.041E+0 4.500E−1 9.519E−1 

5.00E−1 9.404E−1 5.00E−1 9.355E−1 5.00E−1 9.255E−1 3.50E−1 1.018E+0 5.000E−1 9.136E−1 

5.50E−1 9.018E−1 5.50E−1 8.959E−1 5.50E−1 8.843E−1 4.00E−1 9.891E−1 5.500E−1 8.712E−1 

6.00E−1 8.579E−1 6.00E−1 8.511E−1 6.00E−1 8.384E−1 4.50E−1 9.558E−1 6.000E−1 8.245E−1 

6.50E−1 8.082E−1 6.50E−1 8.009E−1 6.50E−1 7.873E−1 5.00E−1 9.181E−1 6.500E−1 7.730E−1 

7.00E−1 7.521E−1 7.00E−1 7.444E−1 7.00E−1 7.305E−1 5.50E−1 8.761E−1 7.000E−1 7.162E−1 

7.50E−1 6.884E−1 7.50E−1 6.806E−1 7.50E−1 6.668E−1 6.00E−1 8.296E−1 7.500E−1 6.529E−1 

8.00E−1 6.152E−1 8.00E−1 6.075E−1 8.00E−1 5.943E−1 6.50E−1 7.782E−1 8.000E−1 5.812E−1 

8.50E−1 5.288E−1 8.50E−1 5.217E−1 8.50E−1 5.095E−1 7.00E−1 7.214E−1 8.500E−1 4.978E−1 

9.00E−1 4.217E−1 9.00E−1 4.156E−1 9.00E−1 4.054E−1 7.50E−1 6.579E−1 9.000E−1 3.957E−1 

9.50E−1 2.708E−1 9.50E−1 2.667E−1 9.50E−1 2.598E−1 8.00E−1 5.858E−1 9.500E−1 2.534E−1 

9.75E−1 1.421E−1 9.75E−1 1.398E−1 9.75E−1 1.362E−1 8.50E−1 5.020E−1 9.750E−1 1.327E−1 

9.80E−1 9.740E−2 9.80E−1 9.586E−2 9.80E−1 9.333E−2 9.00E−1 3.991E−1 9.800E−1 9.099E−2 

9.85E−1 1.000E−4 9.85E−1 1.000E−4 9.85E−1 1.000E−4 9.50E−1 2.556E−1 9.825E−1 5.995E−2 

      9.60E−1 2.154E−1 9.830E−1 5.162E−2 

      9.70E−1 1.656E−1 9.850E−1 1.000E−4 

      9.80E−1 9.180E−2   

      9.85E−1 1.000E−4   
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Table A2. Spline data for the calculated variational parameter 0v vξ ξ  at 50k ≥ . 

k = 50 k = 100 k = 200 

b  0v vξ ξ  b  0v vξ ξ  b  0v vξ ξ  

7.025E−9 9.989E−1 9.090E−6 1.000E+0 1.318E−10 1.000E+0 

9.000E−6 1.001E+0 3.287E−5 1.002E+0 1.000E−6 1.000E+0 

1.500E−5 1.001E+0 1.073E−4 1.003E+0 9.090E−6 1.001E+0 

3.287E−5 1.002E+0 3.456E−4 1.007E+0 3.287E−5 1.001E+0 

1.073E−4 1.004E+0 1.121E−3 1.014E+0 1.073E−4 1.003E+0 

3.456E−4 1.008E+0 3.682E−3 1.029E+0 3.456E−4 1.006E+0 

1.121E−3 1.016E+0 1.287E−2 1.056E+0 1.121E−3 1.014E+0 

3.682E−3 1.031E+0 2.500E−2 1.075E+0 5.000E−3 1.033E+0 

1.000E−2 1.052E+0 5.000E−2 1.095E+0 2.000E−2 1.067E+0 

2.500E−2 1.079E+0 7.000E−2 1.099E+0 5.000E−2 1.093E+0 

5.000E−2 1.098E+0 1.000E−1 1.095E+0 1.000E−1 1.094E+0 

7.000E−2 1.103E+0 1.500E−1 1.072E+0 1.500E−1 1.071E+0 

1.000E−1 1.099E+0 2.000E−1 1.041E+0 2.000E−1 1.040E+0 

1.500E−1 1.076E+0 2.250E−1 1.024E+0 2.250E−1 1.023E+0 

2.000E−1 1.044E+0 2.500E−1 1.006E+0 2.500E−1 1.006E+0 

2.250E−1 1.027E+0 3.000E−1 9.725E−1 3.000E−1 9.718E−1 

2.500E−1 1.010E+0 3.500E−1 9.402E−1 3.500E−1 9.395E−1 

3.000E−1 9.759E−1 4.000E−1 9.098E−1 4.000E−1 9.092E−1 

3.500E−1 9.435E−1 4.500E−1 8.816E−1 4.500E−1 8.810E−1 

4.000E−1 9.130E−1 5.000E−1 8.553E−1 5.000E−1 8.548E−1 

4.500E−1 8.847E−1 5.500E−1 8.310E−1 5.500E−1 8.305E−1 

5.000E−1 8.583E−1 6.000E−1 8.084E−1 6.000E−1 8.079E−1 

5.500E−1 8.339E−1 6.500E−1 7.875E−1 6.500E−1 7.869E−1 

6.000E−1 8.113E−1 7.000E−1 7.679E−1 7.000E−1 7.674E−1 

6.500E−1 7.902E−1 7.500E−1 7.497E−1 7.500E−1 7.492E−1 

7.000E−1 7.706E−1 8.000E−1 7.326E−1 8.000E−1 7.321E−1 

7.500E−1 7.523E−1 8.500E−1 7.166E−1 8.500E−1 7.161E−1 

8.000E−1 7.352E−1 9.000E−1 7.015E−1 9.000E−1 7.010E−1 

8.500E−1 7.191E−1 9.500E−1 6.874E−1 9.400E−1 6.893E−1 

9.000E−1 7.040E−1 9.750E−1 6.805E−1 9.500E−1 6.869E−1 

9.500E−1 6.898E−1 9.800E−1 6.792E−1 9.600E−1 6.837E−1 

9.750E−1 6.829E−1 9.825E−1 6.785E−1 9.700E−1 6.815E−1 

9.800E−1 6.817E−1 9.830E−1 6.784E−1 9.790E−1 6.786E−1 

9.850E−1 6.817E−1 9.850E−1 6.784E−1 9.840E−1 6.774E−1 
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Table A3. Spline data for the calculated variational parameter 0v vξ ξ  at 0.75 2k< ≤ . 

k = 0.75 k = 0.85 k = 1.2 k = 2 

b  0v vξ ξ  b  0v vξ ξ  b  0v vξ ξ  b  0v vξ ξ  

7.258E−6 1.001E+0 5.954E−6 9.946E−1 2.962E−6 1.000E+0 3.287E−5 1.001E+0 

9.000E−6 1.001E+0 7.000E−6 9.946E−1 9.000E−6 1.000E+0 1.073E−4 1.001E+0 

1.500E−5 1.001E+0 9.000E−6 9.946E−1 1.000E−5 1.000E+0 3.456E−4 1.008E+0 

3.287E−5 1.001E+0 3.287E−5 9.946E−1 3.287E−5 1.000E+0 1.121E−3 1.019E+0 

1.073E−4 1.001E+0 1.073E−4 9.946E−1 1.073E−4 1.000E+0 2.000E−3 1.027E+0 

3.456E−4 1.006E+0 3.456E−4 1.006E+0 3.456E−4 1.007E+0 3.682E−3 1.041E+0 

1.121E−3 1.013E+0 1.121E−3 1.014E+0 1.121E−3 1.016E+0 7.000E−3 1.061E+0 

4.000E−3 1.031E+0 3.682E−3 1.031E+0 3.682E−3 1.035E+0 1.000E−2 1.076E+0 

1.000E−2 1.056E+0 1.000E−2 1.059E+0 1.000E−2 1.066E+0 2.000E−2 1.116E+0 

2.500E−2 1.097E+0 2.500E−2 1.102E+0 2.500E−2 1.115E+0 3.500E−2 1.157E+0 

5.000E−2 1.142E+0 5.000E−2 1.149E+0 5.000E−2 1.168E+0 5.000E−2 1.188E+0 

7.000E−2 1.168E+0 7.000E−2 1.177E+0 7.000E−2 1.198E+0 7.000E−2 1.215E+0 

1.000E−1 1.197E+0 1.000E−1 1.206E+0 1.000E−1 1.229E+0 1.000E−1 1.237E+0 

1.500E−1 1.225E+0 1.500E−1 1.234E+0 1.337E−1 1.247E+0 1.500E−1 1.242E+0 

2.000E−1 1.236E+0 2.000E−1 1.244E+0 1.500E−1 1.252E+0 2.000E−1 1.224E+0 

2.250E−1 1.237E+0 2.250E−1 1.244E+0 2.000E−1 1.252E+0 2.250E−1 1.211E+0 

2.500E−1 1.236E+0 2.500E−1 1.242E+0 2.250E−1 1.247E+0 2.500E−1 1.196E+0 

3.000E−1 1.230E+0 3.000E−1 1.231E+0 2.500E−1 1.239E+0 3.000E−1 1.165E+0 

3.500E−1 1.218E+0 3.500E−1 1.216E+0 3.000E−1 1.218E+0 3.500E−1 1.133E+0 

4.000E−1 1.203E+0 4.000E−1 1.198E+0 3.500E−1 1.194E+0 4.000E−1 1.101E+0 

4.500E−1 1.187E+0 4.500E−1 1.179E+0 4.000E−1 1.168E+0 4.500E−1 1.070E+0 

5.000E−1 1.170E+0 5.000E−1 1.159E+0 4.500E−1 1.141E+0 5.000E−1 1.041E+0 

5.500E−1 1.152E+0 5.500E−1 1.138E+0 5.000E−1 1.115E+0 5.500E−1 1.014E+0 

6.000E−1 1.134E+0 6.000E−1 1.118E+0 5.500E−1 1.090E+0 6.000E−1 9.885E−1 

6.500E−1 1.117E+0 6.500E−1 1.098E+0 6.000E−1 1.066E+0 6.500E−1 9.643E−1 

7.000E−1 1.099E+0 7.000E−1 1.079E+0 6.500E−1 1.043E+0 7.000E−1 9.417E−1 

7.500E−1 1.082E+0 7.500E−1 1.061E+0 7.000E−1 1.021E+0 7.500E−1 9.204E−1 

8.000E−1 1.066E+0 8.000E−1 1.043E+0 7.500E−1 1.000E+0 8.000E−1 9.004E−1 

8.500E−1 1.050E+0 8.500E−1 1.025E+0 8.000E−1 9.803E−1 8.500E−1 8.815E−1 

9.000E−1 1.035E+0 9.000E−1 1.009E+0 8.500E−1 9.614E−1 9.000E−1 8.637E−1 

9.500E−1 1.020E+0 9.500E−1 9.928E−1 9.000E−1 9.434E−1 9.500E−1 8.469E−1 

9.750E−1 1.012E+0 9.750E−1 9.850E−1 9.500E−1 9.263E−1 9.600E−1 8.437E−1 

9.800E−1 1.011E+0 9.800E−1 9.835E−1 9.750E−1 9.181E−1 9.700E−1 8.405E−1 

9.850E−1 1.011E+0 9.850E−1 9.835E−1 9.800E−1 9.165E−1 9.800E−1 8.373E−1 

    9.850E−1 9.165E−1 9.850E−1 8.373E−1 
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Table A4. Spline data for the calculated variational parameter 0v vξ ξ  at 5 50k≤ < . 

k = 5 k = 10 k = 20 k = 50* 

b  0v vξ ξ  b  0v vξ ξ  b  0v vξ ξ  b  0v vξ ξ  

2.000E−7 1.001E+0 4.000E−6 1.000E+0 1.000E−8 1.001E+0 7.025E−9 9.989E−1 

1.000E−6 1.001E+0 9.090E−6 1.000E+0 1.000E−6 1.001E+0 9.000E−6 1.001E+0 

9.090E−6 1.001E+0 3.287E−5 1.000E+0 9.090E−6 1.001E+0 1.500E−5 1.001E+0 

3.287E−5 1.001E+0 1.073E−4 1.004E+0 3.287E−5 1.002E+0 3.287E−5 1.002E+0 

1.073E−4 1.004E+0 3.456E−4 1.010E+0 1.073E−4 1.004E+0 1.073E−4 1.004E+0 

3.456E−4 1.010E+0 1.121E−3 1.022E+0 3.456E−4 1.010E+0 3.456E−4 1.008E+0 

1.121E−3 1.022E+0 3.682E−3 1.046E+0 1.121E−3 1.020E+0 1.121E−3 1.016E+0 

3.682E−3 1.047E+0 1.000E−2 1.076E+0 3.682E−3 1.039E+0 3.682E−3 1.031E+0 

1.000E−2 1.085E+0 2.500E−2 1.110E+0 1.000E−2 1.063E+0 1.000E−2 1.052E+0 

2.500E−2 1.132E+0 5.000E−2 1.135E+0 2.500E−2 1.091E+0 2.500E−2 1.079E+0 

5.000E−2 1.169E+0 7.000E−2 1.142E+0 5.000E−2 1.112E+0 5.000E−2 1.098E+0 

7.000E−2 1.181E+0 1.000E−1 1.139E+0 7.000E−2 1.117E+0 7.000E−2 1.103E+0 

1.000E−1 1.183E+0 1.500E−1 1.117E+0 1.000E−1 1.113E+0 1.000E−1 1.099E+0 

1.500E−1 1.165E+0 2.000E−1 1.085E+0 1.500E−1 1.090E+0 1.500E−1 1.076E+0 

2.000E−1 1.134E+0 2.250E−1 1.067E+0 2.000E−1 1.058E+0 2.000E−1 1.044E+0 

2.250E−1 1.116E+0 2.500E−1 1.050E+0 2.250E−1 1.041E+0 2.250E−1 1.027E+0 

2.500E−1 1.099E+0 3.000E−1 1.015E+0 2.500E−1 1.024E+0 2.500E−1 1.010E+0 

3.000E−1 1.063E+0 3.500E−1 9.813E−1 3.000E−1 9.894E−1 3.000E−1 9.759E−1 

3.500E−1 1.029E+0 4.000E−1 9.498E−1 3.500E−1 9.565E−1 3.500E−1 9.435E−1 

4.000E−1 9.961E−1 4.500E−1 9.204E−1 4.000E−1 9.257E−1 4.000E−1 9.130E−1 

4.500E−1 9.657E−1 5.000E−1 8.931E−1 4.500E−1 8.970E−1 4.500E−1 8.847E−1 

5.000E−1 9.374E−1 5.500E−1 8.678E−1 5.000E−1 8.703E−1 5.000E−1 8.583E−1 

5.500E−1 9.111E−1 6.000E−1 8.443E−1 5.500E−1 8.456E−1 5.500E−1 8.339E−1 

6.000E−1 8.866E−1 6.500E−1 8.224E−1 6.000E−1 8.226E−1 6.000E−1 8.113E−1 

6.500E−1 8.639E−1 7.000E−1 8.020E−1 6.500E−1 8.013E−1 6.500E−1 7.902E−1 

7.000E−1 8.426E−1 7.500E−1 7.830E−1 7.000E−1 7.814E−1 7.000E−1 7.706E−1 

7.500E−1 8.227E−1 8.000E−1 7.652E−1 7.500E−1 7.628E−1 7.500E−1 7.523E−1 

8.000E−1 8.041E−1 8.500E−1 7.485E−1 8.000E−1 7.455E−1 8.000E−1 7.352E−1 

8.500E−1 7.867E−1 9.000E−1 7.328E−1 8.500E−1 7.292E−1 8.500E−1 7.191E−1 

9.000E−1 7.702E−1 9.500E−1 7.180E−1 9.000E−1 7.139E−1 9.000E−1 7.040E−1 

9.500E−1 7.548E−1 9.750E−1 7.110E−1 9.500E−1 6.995E−1 9.500E−1 6.898E−1 

9.700E−1 7.488E−1 9.800E−1 7.096E−1 9.750E−1 6.926E−1 9.750E−1 6.829E−1 

9.800E−1 7.459E−1 9.825E−1 7.089E−1 9.800E−1 6.912E−1 9.800E−1 6.817E−1 

9.850E−1 7.459E−1 9.830E−1 7.088E−1 9.830E−1 6.904E−1 9.850E−1 6.817E−1 

  9.850E−1 7.088E−1 9.850E−1 6.904E−1   

*same values as in Table A2 are given here for convenience. 
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Table A5. The dimensional and dimensionless quantities and scaling factors. 

Dimensional quantity Dimensionless quantity Remark 

λ  1kλ ξ =   

ξ  1
k k
ξ
ξ

=   

r  
r
kξ

  

2πR  0 2πk kb kbΦ =   

ψ  
ψ

α β
  

( )f r  
( )f r
f∞

  

ϑ  ϑ  2π  

( )a rϕ  
( ) ( )

22 cc

a r a r
Bk B

ϕ ϕ

ξξ
=  0

2 2πcBξ
ξ

Φ
=  

B  
22 cc

H H
HkH

=  0B Hµ=  
 

1cB  1

2
c

c

H
H

 12 2c
c

k B
B

k
=  

2cB  2

2
c

c

B
k

B
=  

2 0 2c cB Hµ=  

cB  
1

2 2
c

c

B
B

=  
12

1
2

k =  

( )j rϕ  
( )

2c

j r k
H
ϕ ξ

  

( )q rϕ  
( ) ( )

22 cc

q r q r
Bk B

ϕ ϕ

ξξ
=  2

2
c

c

B
k

B
=  

0Φ  0

2
00

2π
2c

kH µλ µ
Φ

=  0
2 22πcB

ξ
Φ

=  

F  2
0 c

F
Hµ

 
2 2 2

0 0 2

2

c c

F F
k H Hµ µ

=  

0M  0

2c

M
B

 and 0

2c

M
B
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